Manufacturing of bioreactive nanofibers for bioremediation.
نویسندگان
چکیده
Recombinant Escherichia coli (E. coli) cells were successfully encapsulated in reactive membranes comprised of electrospun nanofibers that have biocompatible polyvinyl alcohol (PVA)-based cores entrapping the E. coli and silica-based, mechanically sturdy porous shells. The reactive membranes were produced in a continuous fashion using a coaxial electrospinning system coupled to a microfluidic timer that mixed and regulated the reaction time of the silica precursor and the PVA solution streams. A factorial design method was employed to investigate the effects of the three critical design parameters of the system (the flow rate of the core solution, protrusion of the core needle, and the viscosity of the core solution) and to optimize these parameters for reproducibly and continuously producing high-quality core/shell nanofibers. The feasibility of using the reactive membranes manufactured in this fashion for bioremediation of atrazine, a herbicide, was also investigated. The atrazine degradation rate (0.24 µmol/g of E. coli/min) of the encapsulated E. coli cells expressing the atrazine-dechlorinating enzyme AtzA was measured to be relatively close to that measured with the free cells in solution (0.64 µmol/g of E. coli/min). We show here that the low cost, high flexibility, water insolubility, and high degradation efficiency of the bioreactive membranes manufactured with electrospinning makes it feasible for their wide-spread use in industrial scale bioremediation of contaminated waters.
منابع مشابه
Silica/PVA biocatalytic nanofibers
Bioencapsulation has been a promising technique for various biotechnological and medical applications. Nevertheless, when encapsulated, the activity of the encapsulated biologicals is usually reduced due to diffusional resistance and use of organic solvents in the process. Here, we developed a sol–gel electrospinning technique to encapsulate a bacterium, Escherichia coli expressing a biocatalys...
متن کاملTravel-time based model of bioremediation using circulation wells.
Vertical circulation wells can efficiently provide microorganisms with substrates needed for enhanced bioremediation. We present a travel-time based approach for modeling bioreactive transport in a flow field caused by a series of circulation wells. Mixing within the aquifer is due to the differences in sorption behavior of the reactants. Neglecting local dispersion, transport simplifies to a s...
متن کاملManufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...
متن کاملبررسی اثرات پانسمانهای نانوفیبری حاوی کیتوزان در ترمیم زخم در مدل موش سوری
Background & Aims: Wound healing and tissue regeneration are big challenges in medicine. The type of wound dressing has great impact on wound treatment and prevention of superficial infection and scar formation. Wound dressings containing growth factor, antibiotic, antiseptic and antioxidant have great influence in reducing wound scar and accelerating wound healing procedure. Electrospinning is...
متن کاملA Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids.
Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury. We demo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 111 8 شماره
صفحات -
تاریخ انتشار 2014